If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-1.8n-0.4=0
a = 1; b = -1.8; c = -0.4;
Δ = b2-4ac
Δ = -1.82-4·1·(-0.4)
Δ = 4.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1.8)-\sqrt{4.84}}{2*1}=\frac{1.8-\sqrt{4.84}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1.8)+\sqrt{4.84}}{2*1}=\frac{1.8+\sqrt{4.84}}{2} $
| Y=3x2-24x-7 | | -5(4x+5)=-5 | | 8+8y-3y=-3 | | (U-7)x9=36 | | -3x2=99 | | -4(5x+8)=-192 | | 3x2+12=39 | | -2v+13=-5(v-8) | | y*6=2/3 | | n3=1 | | 2x+9÷5=4x | | 8x+120+7x=90 | | 2x/3+3=7 | | 132=10^(2x) | | 15=2x+3x-1 | | x+14=−15 | | -22=-7x+2(x+4) | | 11f-(2f+2);f=1/2 | | 2^x=127 | | -22=-7x | | (x+3)^2+50=25 | | -6k+1=-2+7k | | 4/7x=10/9 | | 15y=-2,25y | | 24/3=b-3 | | 3(1-x)=-4(x-5)=-6 | | x+(x.0.1)=10000 | | 3x(x+6=0 | | x+(x.2)=0 | | 9=-2/3x | | 18x+15=15x-9 | | -1+3f=-7-6f |